AFFINE BRAID GROUP, JM ELEMENTS AND KNOT HOMOLOGY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knot and Braid Invariants from Contact Homology

We introduce topological invariants of knots and braid conjugacy classes, in the form of differential graded algebras, and present an explicit combinatorial formulation for these invariants. The algebras conjecturally give the relative contact homology of certain Legendrian tori in fivedimensional contact manifolds. We present several computations and derive a relation between the knot invarian...

متن کامل

Knot and Braid Invariants from Contact Homology I

We introduce topological invariants of knots and braid conjugacy classes, in the form of differential graded algebras, and present an explicit combinatorial formulation for these invariants. The algebras conjecturally give the relative contact homology of certain Legendrian tori in five-dimensional contact manifolds. We present several computations and derive a relation between the knot invaria...

متن کامل

Knot and Braid Invariants from Contact Homology Ii

We present a topological interpretation of knot and braid contact homology in degree zero, in terms of cords and skein relations. This interpretation allows us to extend the knot invariant to embedded graphs and higher-dimensional knots. We calculate the knot invariant for two-bridge knots and relate it to double branched covers for general knots.

متن کامل

Braid Group Action and Quantum Affine Algebras

We lift the lattice of translations in the extended affine Weyl group to a braid group action on the quantum affine algebra. This action fixes the Heisenberg subalgebra pointwise. Loop like generators are found for the algebra which satisfy the relations of Drinfel ′ d's new realization. Coproduct formulas are given and a PBW type basis is constructed. §0. Introduction. The purpose of this pape...

متن کامل

Braid Ordering and Knot Genus

The genus of knots is a one of the fundamental invariant and can be seen as a complexity of knots. In this note, we give a lower bound of genus using Dehornoy floor, which is a measure of complexity of braids in terms of braid ordering.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2018

ISSN: 1083-4362,1531-586X

DOI: 10.1007/s00031-018-9478-5